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Abstract—Fuzzy clustering assigns a probability of membership for a datum to a cluster, which veritably reflects real-world clustering
scenarios but significantly increases the complexity of understanding fuzzy clusters. Many studies have demonstrated that visualization
techniques for multi-dimensional data are beneficial to understand fuzzy clusters. However, no empirical evidence exists on the
effectiveness and efficiency of these visualization techniques in solving analytical tasks featured by fuzzy clusters. In this paper, we
conduct a controlled experiment to evaluate the ability of fuzzy clusters analysis to use four multi-dimensional visualization techniques,
namely, parallel coordinate plot, scatterplot matrix, principal component analysis, and Radviz. First, we define the analytical tasks and
their representative questions specific to fuzzy clusters analysis. Then, we design objective questionnaires to compare the accuracy,
time, and satisfaction in using the four techniques to solve the questions. We also design subjective questionnaires to collect the
experience of the volunteers with the four techniques in terms of ease of use, informativeness, and helpfulness. With a complete
experiment process and a detailed result analysis, we test against four hypotheses that are formulated on the basis of our experience,
and provide instructive guidance for analysts in selecting appropriate and efficient visualization techniques to analyze fuzzy clusters.

Index Terms—Evaluation, multi-dimensional visualization, fuzzy clustering, parallel coordinate plot, scatterplot matrix, principal
component analysis, radviz

1 INTRODUCTION

Fuzzy clustering [8,22], which is also known as soft clustering, accepts
the fact that clusters in data are usually not completely well separated
and assigns a membership degree (MD) between 0 and 1 for each datum
to every cluster. Traditional hard clustering sorts a datum into a specific
cluster without considering uncertainty. Therefore, fuzzy clustering
is more practical than traditional hard clustering for many real-world
scenarios, such as medical diagnosis [40], weather forecasting [9], and
online music services [41].

Fuzzy clusters can be expressed as a MD matrix in which rows and
columns describe data items and clusters, respectively. A cell indicates
the MD of a datum to a cluster. When the matrix contains numer-
ous data items and a plurality of clusters, it would become complex
multi-dimensional data, which makes obtaining insights from the fuzzy
clusters challenging for analysts. Many studies have demonstrated that
visualization techniques for multi-dimensional data are significantly
beneficial to understand fuzzy clusters [1, 5, 12]. With the assistance of
interpretable and interactive methods, analysts are able to explore the
answers of a series of complex analysis questions [17, 36, 50, 63]. For
example, what is the clustering structure of a fuzzy clustering result?
What mutual relationships exist between the clusters of interest? Is a
clustering result acceptable?

Empirically, one visualization technique performs well only on a
particular analysis task [16,24,34,37]. Therefore, evaluating the ability
of multi-dimensional visualization techniques is essential to provide
practical guidelines that can help analysts in selecting the appropriate
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techniques when faced with various analysis tasks. To our knowledge,
no previous work has evaluated the ability of the techniques to support
the tasks involved in analyzing fuzzy clusters. Most existing approaches
are qualitative studies that examine general tasks for multi-dimensional
data analysis, such as value retrieval [32,58], class separability [24,31],
and correlation judgment [34, 53]. Although these general tasks are
also required in fuzzy clusters analysis, many special tasks featured by
fuzzy clusters are entirely different.

To address this research gap, we conduct a controlled experiment
to evaluate multi-dimensional visualization techniques in analyzing
fuzzy clusters. First, we carefully select four classic multi-dimensional
visualization techniques, namely, parallel coordinate plot (PCP), scat-
terplot matrix (SPM), principal component analysis (PCA), and radial
coordinate visualization (Radviz). Then, we divide the four techniques
into two categories: lossy and lossless, and design consistent visual
encodings and interactions to evaluate them with uniform comparisons.
To guide our experiment design, we carefully define the analytical tasks
specific to fuzzy clusters analysis, expand the tasks into representative
questions, and formulate four hypotheses on the basis of our experience
in practicing the four techniques.

Seven datasets that are frequently used in fuzzy clustering are se-
lected as experiment data. Fifteen graduate students with diverse aca-
demic backgrounds are recruited as experiment subjects. We design
objective questionnaires to present the tasks that the volunteers have
to solve, and observe the accuracy and time of the volunteers using
the four techniques to complete the tasks. We also design subjective
questionnaires to collect the subjective experience of the volunteers.
After preparing the experiment data, volunteers, and equipment, we
design a complete experiment process, including volunteer training,
formal experiment, and interview.

We record two objective metrics (i. e., accuracy and time) and four
subjective metrics (i. e., satisfaction, ease of use, informativeness, and
helpfulness) as experiment results, and perform a comprehensive sta-
tistical analysis using Shapiro-Wilk, non-parametric Friedman, and
Tukey’s HSD tests. The analysis results of the two objective metrics
and the satisfaction measured with the objective questionnaires suggest
that one hypothesis is fully confirmed, but the others are only partially
confirmed. The analysis results of the other three subjective metrics
measured with the subjective questionnaires indicate which visualiza-
tion technique has the best overall usability when performing the tasks.
After synthesizing all the analysis results, we summarize the ability of



the four techniques to support our defined tasks and questions. Finally,
we discuss the experience we gained from the experiment and present
the limitations of this evaluation and further directions.

2 RELATED WORK

2.1 Visualization of Fuzzy Clustering Analysis

Many fuzzy clustering algorithms have been developed ever since
the concepts of fuzzy sets and fuzzy partition were first proposed by
Zadeh [62] and Ruspini [47]. Fuzzy c-means clustering algorithm
(FCM) [6] is the most widely known algorithm because of its simple
design and easy conversion into an optimization problem. In this work,
we use the FCM algorithm to generate fuzzy clusters for our evaluation.
The FCM assigns a probability of membership for each datum to each
cluster, which reflects the fuzzy relations among data items and clusters.
However, this feature increases the complexity of understanding the
clustering result. Klawonn et al. [30] pointed out that multi-dimensional
visualization can facilitate the interpretation and understanding of the
result. From then on, a variety of techniques have been proposed to
analyze fuzzy clusters visually and interactively.

Multi-dimensional visualization techniques, which are based on di-
mensionality reduction (DR) methods, are frequently used to generate
an observable overview of fuzzy clusters. Mao and Jain [38] utilized
PCA to map a fuzzy clustering result onto a 2D plane while preserving
the distances between pairwise data items and to assist analysts in per-
ceiving the similarities between data items. Abonyi and Babuska [1]
proposed a modified fuzzy sammon mapping (FSM) that preserves the
distances between data items and cluster centers instead of pairwise
data items, which associates data items with clusters presented to an-
alysts. Sharko et al. [50, 51] discovered that Radviz has advantages
in visualizing fuzzy clusters because the position of a data item in
Radviz can directly indicate its membership distribution to all clus-
ters. Hoppner and Klawonn [25] combined MDS with spheres to help
analysts in observing the correlation of cluster memberships. Rueda
and Zhang [46] proposed a novel method that maps data items into
an irregular hyper-tetrahedron to reflect inter-cluster relationships in a
spatial manner.

DR-based visualization inevitably results in the loss of information.
To avoid information loss, some researchers proposed lossless visual-
ization techniques to present the complete information of fuzzy clusters.
Berthold and Hall [5] visualized a fuzzy clustering result in PCP to
enable analysts to investigate the membership distributions of clusters
intuitively. Gasch and Eisen [21] employed a heatmap to visualize
the sorted membership matrix of a fuzzy clustering result to help an-
alysts discover similarities between clusters as correctly as possible.
On the basis of the design of SPM, Cao et al. [7, 35] presented a novel
technique called UnTangle Map, which weaves an interactive mesh of
triangle-style scatterplots and is suitable for analyzing fuzzy similarities
and correlations among clusters.

All the above approaches have their own technical strengths in fuzzy
clusters analysis. To our knowledge, no previous work has systemati-
cally evaluated their strengths and weaknesses. Therefore, this work
selects PCA and Radviz from the above DR-based techniques and
PCP and SPM from the obove lossless techniques as representatives to
perform an evaluation.

2.2 Evaluation of Multi-dimensional Visualization

A number of visualization techniques are used to visualize multi-
dimensional data. Keim and Kriegel [29] classified these techniques
into six categories. Most of the techniques that are used for fuzzy clus-
ters analysis belong to the first category, namely, geometric projection.
The four popular techniques that belong to this category are used in
the evaluation and divided into two groups, namely, lossy (PCA and
Radviz) and lossless (PCP and SPM).

Visualizing multi-dimensional data on a 2D/3D plane/space is an
inherently ill-posed problem; thus, no single method has no drawbacks.
Researchers have gradually realized the importance of comparing and
evaluating different techniques. For example, for the lossy approaches,
Sedlmair et al. [49] explored the performance of four frequently used

DR methods on class separability, and Rubio-Sánchez et al. [45] com-
pared two classic radial projection techniques (i. e. Radviz and star
coordinates) on their mapping mechanisms and layout performances.
For the lossless techniques, Holten and Wijk [24] evaluated the time
and correctness performances of nine PCP variations for cluster identi-
fication, and Li et al. [34] compared the effectiveness of PCP and SPM
for correlation judgment.

In addition to comparing multi-dimensional visualization techniques
from a technical standpoint, evaluations that involve real-world appli-
cation scenarios are important. These evaluations, along with paying
attention to the immediate needs of the actual users and reducing ab-
stract technical comparisons, aim to provide practical guides that help
users select the most appropriate technique when faced with an analysis
task. A few evaluation studies have been conducted in real-world sce-
narios. Dimara et al. [14] rigorously evaluated the ability of PCP, SPM,
and tabular visualizations to support decision making while selecting
holiday travel packages as its application scenario. Marghescu [39]
investigated various multi-dimensional visualization techniques with
respect to their effectiveness in solving the problem of financial com-
petitor benchmarking. Rzeźniczak [48] examined many techniques to
obtain the best technique in facilitating disease recognition based on
reference to medical patterns and data of patient’s condition. This work
focuses on the scenario of fuzzy clusters analysis. This is considered a
new scenario different from the above scenario-based evaluations.

As stated in Section 2.1, a number of works have presented their
methods of visualizing multi-dimensional fuzzy-clustered data. Some
of them provided evaluations in explaining the pros and cons of their
proposed methods. Abonyi and Babuska [1] compared the cluster
validity performance of FSM and PCA. Cao et al. [7] conducted a
brief evaluation to illustrate the advantages of UnTangle Map on PCP,
SPM, and PCA. However, such evaluations often tend to only examine
several analysis tasks that can highlight the outstanding features of
their proposed methods. So far, no study has conducted systematical
evaluation followed by carefully summarized analysis tasks controlled
under rigorous experimental settings to understand fuzzy clusters.

3 TECHNIQUE DESIGN

We focus on four visualization techniques, namely, PCP, SPM, PCA,
and Radviz. The technique selection is mainly based on three principles:
(1) Universality, the candidates must be popular in multi-dimensional
data visualization and fuzzy clusters analysis. All the four selected tech-
niques are very common multi-dimensional visualization techniques
and have appeared in the literatures related to fuzzy clusters analysis;
(2) Diversity, the candidates must cover the lossy and lossless tech-
niques introduced in Section 2.1 to expand the diversity of techniques.
Among the four selected techniques, PCA and Radviz are represen-
tatives of lossy techniques, while PCP and SPM are representatives
of lossless techniques; (3) Comparability, the candidates of the same
category should have distinct strategies for embedding data in a 2D
plane. In terms of our choice, PCA and Radviz have entirely distinct
multi-dimensional data projection strategies, and the visual mappings
of PCP and SPM are also quite different.

3.1 Data Model
We use the FCM algorithm proposed by Bezdek et al. [6] to generate
fuzzy clusters data (CData) from the original data (OData). OData and
CData can be described as matrices. In the OData matrix, each row
and column represent a data item and an original dimension (ODim),
respectively. In the CData matrix, each row represents a data item,
but each column represents a cluster (CDim). The value of each cell
indicates the MD to which a specific data item belongs to a certain
cluster. The FCM algorithm has two initialization parameters, namely,
m for controlling the extent of cluster overlap and c for identifying the
number of target clusters. The parameter m is kept consistent for all
examined datasets, and c equals the ground truth.

3.2 Visual Encodings
Using various encodings in different visualizations may result in con-
fusion or misinterpretation among volunteers [44]. In this study, we



Figure 1. Four evaluated visualization techniques and three provided interactions: (a) PCP with range selecting interaction; (b) SPM with range
selecting interaction; (c) PCA with hovering interaction; (d) Radviz with color encoding option.

attempt to design consistent visual encodings for all the four techniques
as much as possible.

PCP: We use the conventional visual encodings of PCP [26], as
shown in Figure 1(a). Each vertical axis represents a CDim. All axes
are arranged in parallel. Each polyline represents a data item. The
position of a polyline on each axis is proportional to its MD for that
CDim.

SPM: We use the generalized SPM developed by Cleveland [10], as
shown in Figure 1(b). It assigns CDims to vertical axes and displays
all possible pairwise CDims with multiple scatterplots. Data items are
drawn as dots in the Cartesian spaces defined by CDims.

PCA: We use the PCA proposed by Jollife [28] to project the multi-
dimensional CData into a 2D plane where a dot represents a data item,
as shown in Figure 1(c). Conventional PCA projection fails to provide
any CDim-related visual information. A pentagram is added to the
center of each cluster to be consistent with the other three visualizations.
The position of the cluster center is obtained in the original data space
and then projected to the 2D plane.

Radviz: We use the original Radviz proposed by Hoffman et al. [23],
as shown in Figure 1(d). Each anchor, represented by a pentagram on
the circumference, represents a CDim. Each dot in the circle represents
a data item, and all the data items are mapped into the circle according
to the spring forces from the anchors.

In addition to the above basic visual encodings, other consistent
visual designs are found in all the visualizations. First, the default color
of the dots in SPM, PCA, and Radviz is gray, with a default opacity
of 0.4 and a diameter of 8 pixels. The default color and opacity of
polylines in PC are the same as those of the other visualizations, except

for a width of 2 pixels. Second, CDims share the same colors and labels,
such as C1, C2, and C3, in all the visualizations. We obtain the order
of CDims based on the similarities among them [3, 42, 61] to reduce
visual clutter and keep the order consistent in PCP, SPM, and Radviz.
Lastly, all the visualizations have the same visible area (2400×1800)
because a fair comparison requires that all techniques occupy the same
space.

3.3 Interactions

Interactions play important roles in visual analysis. In the evaluation,
volunteers will struggle to complete some analytical tasks without any
interaction. We thus discreetly provide three basic interactions and
ensure that the interactions can reveal uniform information in all the
four techniques.

Range selection: This interaction helps volunteers focus on a subset
of selected data items. In PCP, it is performed by brushing one or more
axes. In SPM, Radviz, and PCA, volunteers can execute and adjust a
rectangle brush. In SPM, brushing can be carried out in any scatterplot,
and the effects will appear simultaneously on all scatterplots. The
opacity of the selected data items will change from the default 0.4 to 1,
the color will change from gray to red, and the number will be displayed
on the control panel side, as shown in Figure 1(a) and Figure 1(b).

Hovering: Hovering over a data item (polyline in PCP or dot in
SPM, PCA, and Radviz) will trigger a tooltip, which presents its de-
tailed information, such as ID and all MDs, as shown in Figure 1(c).
Meanwhile, the data item will be highlighted with opacity changing
from 0.4 to 1 and a doubled size (width of polyline or diameter of dot).



Table 1. Analytical tasks and representative questions.

Tasks Questions
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T1. Information recognition

of a data item

Q1. Membership information of a data item: What are the maximum and minimum

MDs of a given data item?

Q2. Stability of a data item: Is a given data item stable?

(PS: If a data item belongs to one cluster with a dominant high MD, then it is stable;

otherwise, it is unstable.)

T2. Information recognition

of a data group

Q3. Stability of a data group: Are more stable data items than unstable data items

presented in a given data group?
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T3. Information recognition

of a single cluster

Q4. Membership information of a single cluster: What are the maximum and

minimum MDs of a given cluster?

T4. Information recognition

of a cluster group

Q5. Dominant cluster: Does a dominant cluster exist in a fuzzy clustering result?

(PS: According to the maximum MD principle, if the number of data items

partitioned into a cluster is significantly greater than that of other clusters, then the

cluster is a dominant cluster.)

Q6. Similarities between clusters: Given multiple clusters, do they have similar

membership distributions?

Q7. Correlations between clusters: Given multiple clusters, do they have positive

correlations?

(PS: If the membership degrees of most data items belonging to two clusters increase

or decrease simultaneously, then the two clusters have a positive correlation.)

Hovering over a dot in one scatterplot of SPM will highlight all dots
that represent the same data item in the other scatterplots.

Color encoding option: This interaction is only permitted when
volunteers are completing the specific question T4-Q5 which is defined
in Section 4.1. If this option is triggered, then the color of all the data
items will turn into the colors of corresponding CDims according to
the maximum MD principle, as shown in Figure 1(d). The maximum
MD principle is a strategy that is commonly used to convert soft clus-
tering result into hard clustering result [33]. More specifically, when
dividing a data item that belongs to multiple clusters into one cluster,
this principle states that the data item should be divided into the cluster
that corresponds to the maximum MD of the data item.

4 TASKS AND HYPOTHESES

4.1 Task Definition

Various application scenarios have the requirement of understanding
fuzzy clusters. For example, online music providers would like to know
the music preferences of their customers so as to provide greater person-
alization services. Generally, people have different music preferences.
Some like jazz only, and others may like jazz and pop with different
degrees. This can be considered as a kind of fuzzy clusters where
different music types are clusters and the customers are data items. The
providers are supposed to utilize visualizations to facilitate the analysis
of such fuzzy clusters. They would like to find the answers of some
specific queries, such as which types of music are more popular than
others, whether the preferences of a particular customer or a group
of customers are clear, and which groups of customers have similar
preferences.

We have not found a well-defined list of analytical tasks specific
to fuzzy clusters visualization. To determine the analytical tasks,
we first surveyed the user needs of interpreting and understanding
fuzzy clusters, as well as the task taxonomies constructed for multi-
dimensional visualization and visual analytics via literature research
[2, 15, 54, 57, 59, 60]. Then, we conducted pilot experiments to obtain a
tentative list of the analytical tasks. By working closely with a data min-
ing expert, we refined and confirmed the tentative task list repeatedly
and set up the completed tasks shown in Table 1.

The tasks are divided into two categories, namely, cluster- and data-
oriented tasks. Each category involves two specific tasks for identifying
information from two perspectives, namely, a single object (data item
or cluster) and a group of objects (data items or clusters). To facil-
itate our questionnaire design, we further extend the four tasks into
some representative questions. For a single data item (T1), we mainly
examine whether volunteers can identify its maximum and minimum
MDs and its stability when using a visualization technique. For the
task of a group of data items (T2), we focus on comparing the number
of stable and unstable data items. For a single cluster (T3), we only
identify its maximum and minimum MDs. As for a group of clusters
(T4), volunteers are asked to answer whether a dominant cluster exists
in a fuzzy clustering result and whether multiple given clusters have
similar membership distributions and positive correlations.

4.2 Hypotheses Definition
We expect to find the right techniques from the four visualization
techniques for the above tasks/questions. To guide the design and
analysis of our experiments, we formulated four hypotheses based on
our experience in practicing the four techniques.

H1: Lossless techniques will perform better in terms of accuracy
than lossy techniques within the group of questions (Q1, Q4, Q6, Q7).
We formulate this hypothesis because both lossless visualizations (PCP
and SPM) provide graphical axes. We believe that graphical axes can
facilitate the identification of the maximum and minimum MDs of a
given data item (Q1) or cluster (Q4) and depict the MD distribution of
all the data items of each cluster (Q6). Furthermore, the comparative
views defined by pairwise axes in PCP and SPM make identifying
cluster correlations (Q7) convenient for volunteers.

H2: Radviz will outperform the other three techniques within the
group of questions (Q2 and Q3) in terms of accuracy, time, and sat-
isfaction. The radial spring-based projection model [23] of Radviz
can gather stable data items near relevant dimension anchors. We thus
believe that Radviz facilitates the stability determination of data items.

H3: Lossy techniques will perform better in terms of time and
satisfaction than lossless techniques within Q5. Data items are colored
according to the maximum MD principle to answer Q5. Thus, the
performance comparison is translated to whether the visualizations can



clearly present colored data items. Empirically, lossless approaches
tend to produce higher visual clutter than lossy ones, thereby causing
volunteers to suffer from more cognitive load.

H4: The volunteers who specialize in visualization will perform
the best in terms of accuracy and time in all tasks. The basis for
this hypothesis is the idea that the volunteers with a visualization
background are more familiar with the four visualization techniques
and more skilled in manipulating the provided interactions than the
volunteers with other backgrounds.

5 EXPERIMENT DESIGN

The evaluation of this study aims to explore the performance of the
four visualization techniques (PCP, SPM, PCA, and Radviz) in ana-
lyzing fuzzy clusters. Thus, a within-subject design is selected with
independent variables of the four visualization techniques, five datasets,
and seven questions. Each volunteer was assigned all the four visual-
ization techniques and any two datasets, so they had to undergo the
experiment under 56 (4×2×7) conditions. The order of datasets and
visualization techniques was randomized to mitigate learning and fa-
tigue effects. The measured dependent variables included two objective
metrics, namely, accuracy (percentage) and time (seconds), and four
subjective metrics (seven-point Likert scale), namely, satisfaction, ease
of use, informativeness, and helpfulness.

5.1 Data and Questionnaire
We initially gathered 20 frequently used datasets in fuzzy clustering.
Each of them has been used in a case study in at least one relevant
literature. Then, we selected seven datasets from the 20 candidates for
evaluation, as shown in Table 2. Our data selection is mainly based on
two principles. The first is to select data with moderate sizes because
a large data size will cause visual scalability issues and a small data
size will be straightforward. Hence, we selected the datasets with 3
to 10 CDims and 100 to 3,000 data items. The second principle is to
construct the chosen datasets with dissimilar fuzzy clustering structures.
For example, we reserved the Glass dataset but disregarded the Ecoli
dataset because their clustering results present similar polygon-style
clustering structures.

For each selected dataset, we provided two types of questionnaires.
The first type is an objective questionnaire, which includes seven ques-
tions described in Section 4.1. All questions were presented in the
order of simple to complex to better prepare volunteers for the difficult
tasks at the end. We provided four objective questionnaires, which
correspond to the four visualization techniques for each dataset.

The details of objective questions were preset with the representative
items or clusters selected from the data to ensure that volunteers can
observe the typical clustering characteristics of the data. Take the
objective questionnaire of Radviz and the Iris dataset as an example.
We specified two data items with completely different stabilities for
Q1 and Q2: unstable data item A and stable data item B, as shown
in Figure 2, and required volunteers to identify the maximum and
minimum MDs and stabilities of the two data items. As the three
clusters of the Iris dataset have two types of MD distributions, namely,
decline and concave, we assigned a decline cluster C1 and a concave
cluster C3 for Q4, and asked volunteers to identify the maximum
and minimum MDs of the two clusters. We specified the consistent
data items and clusters for the four objective questionnaires of the Iris
dataset.

The second type of questionnaire is a subjective questionnaire with
three statements for each technique: (1) “I think this visualization
is easy to use;” (2) “I think this visualization is informative;” (3) “I
think this visualization is helpful.” These three statements correspond
to three technical usability metrics: ease of use, informativeness and
helpfulness, which are commonly and widely used in the evaluation
community [14, 52, 55]. The above two types of questionnaires are
provided in the appendix with the Iris dataset as the example.

5.2 Participants and Apparatus
We recruited 15 volunteers (eight males and seven females) as the ex-
periment subjects. All volunteers are not color blind and have normal

Table 2. Datasets used for evaluation.

Datasets Data Items Dimensions Clusters

Iris [4], (for training) 150 4 3

Glass [4] 214 9 6

Dermatology [4] 259 34 6

Heart Disease [4], (for training) 303 14 5

Synthetic [18] 750 12 4

Concrete [4] 1030 9 4

Pendigits [4] 2498 63 10

Figure 2. Illustration of selecting two representative data items of the Iris
dataset to design the details of objective questions.

or corrected-to-normal vision. Their age ranges from 20 to 27 (with an
average of 25). In addition, they are all graduate students affiliated with
the school of information science and engineering in a university and
have diverse academic backgrounds. Five volunteers have a data visu-
alization background, five volunteers have a data mining background,
and the other five volunteers come from other majors.

All experiments were conducted on a 27.2-inch Dell OptiPlex 7040
desktop with a 3.4 GHz Intel i7 processor, 8 GB of RAM, and a screen
resolution of 3840× 2160. A standard wired mouse and keyboard
were connected to the desktop to enable the volunteers to interact with
experimental software and input their answers.

5.3 Experiment Procedure

The purpose and procedure of the study were explained at the beginning
of the experiment. All the volunteers were asked to fill in their basic
personal information (name, gender, age, and major). Subsequently,
the test supervisor explained the visualization techniques, datasets, and
questionnaires to the volunteers and demonstrated all the interactions.
After ensuring that the volunteers understood all the visualization tech-
niques and questionnaires correctly, we took two datasets (the fuzzy
clustering results of the Iris and Heart Disease datasets) that are not
related to the formal experiment as training datasets. We used the
two datasets to help the volunteers become familiar with the whole
procedure, including the use of the four visualization techniques and
answering questions. The volunteers were told to use a keyboard or
mouse to input or select their answers to each question.

The formal experiment was conducted after the volunteers had mas-
tered the visualization techniques and familiarized themselves with the
questionnaires. Each volunteer needed to use two datasets and four
visualization techniques to finish two rounds of experiments, and only
one dataset was used in one round. During each round of experiment,
we first assigned a dataset and a visualization technique to a volunteer
randomly and took out the objective questionnaire that corresponded



to the dataset and the visualization technique. Prior to completing
an objective question, the volunteers were asked to read the question
carefully. Then, the volunteers pressed the “Start” button to turn on
a timer and started solving a question. After the volunteers obtained
their answers, they pressed the “Stop” button to shut down the timer
and gave the answers. After answering the question, the volunteers
must rate their satisfactions with the use of this technique in solving
this question on a seven-point Likert scale ranging from 7 (strongly
satisfied) to 1 (strongly dissatisfied). Afterwards, the volunteers pressed
the “Next” button to start a new question. No strict time limits were
imposed during the experiment. After using a visualization technique
to complete the objective questionnaire, the volunteers were allowed to
rest to avoid fatigue. Later, we assigned another technique and relevant
objective questionnaire randomly. Immediately after the volunteers
examined all the four techniques, they were provided with a subjective
questionnaire and were asked to rate how they agreed with the three
statements in the subjective questionnaire based on a seven-point Likert
scale ranging from 7 (strongly agree) to 1 (strongly disagree). Then, all
the volunteers were required to rest for at least two hours before they
started the other round of experiment. Once the volunteers had com-
pleted both rounds of experiments, they were encouraged to state their
problems and feelings as much as possible. In the formal experiment,
we randomized the order of datasets and visualization techniques. We
also ensured that each dataset was used six times and each visualization
technique was used 30 times.

5.4 Analysis Approach

We fully recorded two objective metrics and four subjective metrics as
experiment results. Accuracy and time were measured for each question
in the objective questionnaires. We used these two objective metrics
to observe the efficiency of each visualization technique in completing
each question. Satisfaction was measured to disclose the volunteers’
preferences of each visualization when completing each question. We
thus asked the volunteers to rate their satisfactions when they completed
each question in the objective questionnaires to accurately and timely
record their emotions. Ease of use, informativeness and helpfulness
were measured with the subjective questionnaires to reveal the overall
usability of techniques. We utilized a box plot to mark the outliers when
the value of each metric was beyond two standard deviations (upper
bound and lower bound). In accordance with standard procedure, the
outliers were replaced with medians.

When analyzing experiment results, we first used the Shapiro-Wilk
test to examine the normality and found that all results did not follow
the normal distributions (p < 0.05). Thus, we used a non-parametric
Friedman test instead of ANOVA test to examine whether the four
visualization techniques have significant differences in the six metrics
[13, 43]. If significant differences were found, then we conducted
Tukey’s HSD test for pairwise comparison of any two techniques. All
the tests were performed under the standard significance level p = 0.05
to determine the statistical significance of the experiment results. In the
pairwise comparison, we applied Bonferroni correction to adjust the
significance level. On the basis of the pairwise comparison results, we
could rank the four techniques in terms of the six metrics and further
investigate why significant differences between them exist.

6 EXPERIMENT RESULTS

This section describes the analysis of the experiment results measured
with the objective and subjective questionnaires.

6.1 Hypothesis and Objective Questionnaire Analysis

The results measured with the objective questionnaires are shown in
Figure 3, Figure 4, and Figure 5. By using the results, we first test
against the four hypotheses and then summarize our findings from the
perspectives of analytical tasks and techniques.

H1: Influence of graphic axes and interactions. We assumed that
lossless techniques will outperform lossy techniques within questions
Q1, Q4, Q6, and Q7 in terms of accuracy because PCP and SPM
provide graphical axes. This hypothesis can be confirmed partially.

Considering Q1 first, the results are totally different from the hy-
pothesis. The accuracy of the four visualization techniques is greater
than 96%, as shown in Figure 3(a), no significant differences among
them (χ2(3) = 2.609, p = 0.46 > 0.05) are found. The hovering in-
teraction is assumed to play a crucial role. The volunteers can easily
obtain accurate MDs of a data item from the pop-up tooltip triggered
by hovering over a dot or line. The close-to-perfect accuracy of all the
techniques in Q1 indicates that the interaction has a significant impact
on the performance of the visualization techniques.

The mean accuracy of PCP for Q4 is higher than that of SPM, which
partially supports H1. PCP performs the best due to its vertical axes that
represent clusters. The volunteers can thus read the MDs of a cluster
easily. Both lossy techniques rank second, but no significant pairwise
differences between them and PCP are found. This result shows that the
volunteers made good use of the hovering interaction, thus addressing
the lack of graphic axes of the two lossy techniques. SPM is the last
one with significant pairwise differences with any of the other three
(p < 0.05) because of the much lower resolution of the SPM axes than
that of the PCP axes. Therefore, even if SPM has graphic axes, the
sight of the volunteers would be blurred when they were identifying
information of cluster MDs.

The results of Q6 are completely consistent with H1. The two loss-
less techniques are significantly better than the two lossy techniques
in terms of accuracy, time, and satisfaction. As observed in the exper-
iments, the volunteers were able to fully utilize the graphical axes of
PCP and SPM to comprehend the distributions of all the data items on
the axes and compare the similarities of the membership distributions
of various clusters.

The results of Q7 partially support H1. The mean accuracy of the
two lossy techniques (PCA and Radviz) lies between that of SPM
and PCP. More precisely, SPM performs well, whereas PCP performs
poorly. Significant pairwise differences exist among them (p < 0.05,
SPM: µ = 0.729,σ = 0.248, PCP: µ = 0.344,σ = 0.262, PCA: µ =
0.521,σ = 0.102, Radviz: µ = 0.541,σ = 0.310). SPM and PCP have
pairwise axes, which make them more effective in assisting correlation
analysis than the two lossy techniques. However, PCP performs worse
than expected mainly because of the disabled interactions that allow
the volunteers to modify the arrangement of the axes. This result of
PCP once again demonstrates the importance of interactions.

H2: Influence of geometric projection mechanisms. We assumed
that Radviz’s projection mechanism is effective in helping the volun-
teers determine the stability of data items (Q2 and Q3) in terms of
accuracy, time, and satisfaction. This hypothesis is fully confirmed.
Radviz has significantly better performances (accuracy, time, and satis-
faction) than any other technique. For instance, as shown in Figure 3(b),
the time result of Q2 is Radviz < SPM < PCP < PCA (p < 0.05,
Radviz: µ = 19.0,σ = 11.361, SPM: µ = 28.4,σ = 16.589, PCP:
µ = 28.5,σ = 17.753, PCA: µ = 28.8,σ = 12.338).

H3: Influence of visual clutter in the visualization results. We
assumed that the two lossy techniques are better suited (in terms of
time and satisfaction) to identifying the dominant cluster due to the
visual clutter issue (Q5). Again, this hypothesis is confirmed partially.
Figure 3(b,c) show that the two lossy techniques cost little time and
have high satisfaction scores when solving Q5. As expected, SPM
significantly costs more time (µ = 80.7 and σ = 43.310) and has a
lower satisfaction score (µ = 4.8 and σ = 1.085) than the two lossy
techniques. Each scatterplot in SPM occupies only a tiny screen space.
Thus, the volunteers that suffered from severe visual clutter had to
spend more time selecting the data items of interest. Surprisingly,
PCP performs almost as well as the two lossy techniques (Time: µ =
61.1,σ = 19.048, Satisfaction: µ = 5.6,σ = 0.669) because the visual
clutter in PCP is mainly located at the bottom of the axes (low MD
area). The top areas of the axes are critical in analyzing the dominant
cluster.

H4: Influence of volunteers’ academic background. We assumed
that the volunteers with a visualization background will complete all the
questions with the highest accuracy and the least time. This hypothesis
can be confirmed partially. When looking into the completion time,
the results are consistent with this hypothesis. As shown in Figure 4,



PCP SPM PCA Radviz PCP SPM PCA Radviz PCP SPM PCA Radviz

Q1 97.3% 97.9% 96.3% 98.3% Q1 22.6 20.6 15.2 14.8 Q1 6.4 6.5 6.7 6.8

Q2 68.3% 67.5% 66.7% 89.2% Q2 28.5 28.4 28.8 19.0 Q2 5.9 5.8 5.9 6.5

Q3 65.6% 66.7% 63.3% 86.7% Q3 97.8 96.9 95.4 66.5 Q3 5.1 5.0 5.2 6.2

Q4 83.3% 64.2% 78.3% 82.5% Q4 32.5 30.6 47.7 39.6 Q4 6.1 6.0 5.4 5.4

Q5 76.7% 75.0% 80.0% 81.7% Q5 61.1 80.7 48.0 47.1 Q5 5.6 4.8 5.5 5.6

Q6 70.5% 69.5% 50.0% 54.6% Q6 40.1 54.1 66.4 65.6 Q6 5.4 5.3 4.2 4.5

Q7 34.4% 72.9% 52.1% 54.1% Q7 130.3 60.3 98.1 95.5 Q7 4.9 5.4 3.7 3.7

Accuracy (percentage) Time (seconds) Satisfaction (seven-point Likert scale)

(a) (b) (c)

Figure 3. Results of mean accuracy (a), mean time (b), and mean satisfaction score (c) in solving each question with the four visualization techniques.
Colors indicate groups of no significant pairwise differences, with the winners shown in dark blue, losers in gray, and the ones in between in light blue.
Taking Q7 in (a) as an example, the four fields have various colors that reflect the significant differences; the dark blue SPM is the winner, and the
gray PCP is the loser, whereas the fields of PCA and Radviz are light blue, which indicates that they are in between and that no significant difference
exists between them.

Figure 4. Results of the mean time of the volunteers with different aca-
demic backgrounds. Different colors indicate that there are significant
differences among corresponding groups. The volunteers with a visu-
alization background or a data mining background have a significant
advantage over the volunteers with no background, while no significant
difference exists between the former two groups of volunteers.

the volunteers with a visualization background spend the shortest time
(µ = 33.0,σ = 26.290), followed by the volunteers with a data mining
background (µ = 34.5,σ = 28.902), and those without any relevant
background spend the longest time (µ = 38.7,σ = 32.252). As shown
in Figure 5, contrary to time, the volunteers with a visualization back-
ground gain the lowest accuracy, the volunteers with no background
are in between, and the volunteers with a data mining background rank
the first. We observed in the experiments that the volunteers with a
visualization background were skilled in using interactions and they felt
confident in their answers so had not repeatedly verified the answers,
whereas the volunteers with a data mining background were interested
in exploring the data. One of the volunteers with a visualization back-
ground said, “I’m familiar with this and I don’t need to look at the
screen over and over again.” while one volunteer with a data mining
background stated, “It is a little hard to finish all the tasks in a short
time, but it’s great to explore the data interactively through the system.”

On the basis of the overall objective questionnaire results, Radviz
performs the best among the four techniques. In the three aspects
of accuracy, time, and satisfaction, Radviz appears in the top-ranked
group 11 out of 21 times, followed by PCP and SPM, both of which
appear in the top-ranked group 7 out of 21 times. PCA obtains the
worst performance, appearing in the top-ranked group only 5 out of 21
times. For Q1, the four techniques perform almost as well in terms of

Figure 5. Results of the mean accuracy of the volunteers with different
academic backgrounds. Different colors indicate that there are signifi-
cant differences among corresponding groups. The volunteers with a
data mining background or no background have a significant advantage
over the volunteers with a visualization background, while no significant
difference exists between the former two groups of volunteers.

accuracy with the assistance of the interactions. However, the two lossy
techniques require a shorter time and obtain a higher satisfaction score
than the two lossless techniques. As for Q2 and Q3, Radviz remarkably
outperforms the other three techniques under various accuracy, time,
and satisfaction conditions. For Q4, PCA, Radviz, and PCP are similar
in accuracy, but PCA and Radviz are slightly worse among the three
techniques in terms of time and satisfaction. When it comes to Q5, no
significant differences in terms of accuracy are found among the four
techniques. SPM requires the longest time and has the lowest satisfac-
tion score among all the techniques. For Q6, the two lossless techniques
outperform the two lossy techniques significantly in terms of accuracy,
time, and satisfaction. As for Q7, SPM obtains the highest accuracy
with shorter time and better satisfaction than the other techniques.

6.2 Subjective Questionnaire Analysis

Figure 6 shows the ratings of the four visualization techniques with re-
gard to the ease of use, informativeness, and helpfulness. Tukey’s
HSD test reveals the four visualization techniques with different
ranks on the three metrics. PCP (µ = 5.2,σ = 1.440) and Radviz
(µ = 4.7,σ = 1.557) are better than SPM (µ = 3.8,σ = 1.633) and
PCA (µ = 3.7,σ = 1.688) for the ease of use ratings. The two lossless
techniques (PCP: µ = 5.5,σ = 1.196, SPM: µ = 5.2,σ = 1.289) sig-
nificantly outperform the two lossy techniques (Radviz: µ = 4.6,σ =



Figure 6. Stacked bar chart of subjective ratings with respect to ease of
use, informativeness, and helpfulness of the four evaluated visualization
techniques. Each volunteer answered a seven-point Likert scale with the
subjective questionnaire after a round of experiment. Thirty ratings for
each metric and technique were collected from 15 volunteers with two
rounds of experiments.

1.194, PCA:µ = 4.2,σ = 1.591) for informativeness. As for helpful-
ness, PCP receives the highest ratings (µ = 5.3,σ = 1.484), Radviz is
in between (µ = 4.8,σ = 1.821), and SPM (µ = 4.5,σ = 1.796) and
PCA (µ = 4.1,σ = 1.814) are the lowest in rank.

All in all, PCP is the most useful technique. The volunteers deemed
that the important advantage of PCP is its graphic axes, which makes
most of the cluster-related questions easy to handle. The volunteers
commented, “PCP’s axes help me estimate the distribution of all data
items on a cluster” and “I can immediately read the corresponding
value on the axis when identifying the maximum MD of a cluster”. The
second most useful technique is Radviz. Almost all volunteers reported
that the projection mechanism of Radviz is helpful in identifying the
stability of data items and the dominant cluster. As stated by most
volunteers, “The positions of stable data items in Radviz are easy to
locate, so we do not need to examine many data items”.

SPM and PCA appear to be the least useful, with both having low
ratings in terms of the three metrics. When asked to explain why they
assigned low ratings to SPM, the volunteers explained that they found
the visual clutter in SPM annoying, “So many data points are crowded
together that I don’t know where to set about analyzing”, “For me,
SPM is useful only to compare the correlations between clusters”. PCA
received low ratings likely due to its insufficient presentation of the
cluster-oriented information, as some volunteers remarked that they
can hardly find the information about clusters in PCA.

We briefly analyzed the correlation between informativeness and
helpfulness. The experiment results show that the informativeness of
PCP, PCA and Radviz has positive correlation with their helpfulness,
which is consistent with the common sense that more informative visu-
alizations would be more helpful. However, this positive correlation
fails to appear on SPM. Most volunteers admitted that SPM is infor-
mative, as they commented, “SPM shows almost all information of a

dataset.” But they also concerned that the information is repeated many
times in SPM, as some volunteers commented, “There is too much
information in SPM you need to keep track of.” And one volunteer
emphasized, “The similar information is a bit distracting when I’m
using SPM.”

6.3 Summary
The experiment results of objective questionnaires confirmed that no
single visualization technique had remarkable ability to well support all
the tasks. Considering the data-oriented tasks, Radviz obtained the best
overall performance, which mainly benefits from its radial spring-based
projection mechanism. As for the cluster-oriented tasks, PCP outper-
formed the other three techniques due to its vertical axes that represent
clusters. SPM performed well when judging the correlations and simi-
larities between clusters because it provides comparative views defined
by pairwise axes, but the severe visual clutter in SPM made it perform
poorly in the other tasks. PCA performed the worst in most of the
tasks mainly due to its insufficient presentation of cluster information.
Analyzing the ratings of the four visualization techniques in subjective
metrics, we found that the more useful visualization techniques were
PCP and Radviz. With regard to the influence of volunteers’ academic
background, we found that the volunteers with higher accuracy were
those who were interested in fuzzy clusters analysis but not familiar
with visualization techniques.

7 DISCUSSION

In this section, we discuss the limitations of this evaluation and suggest
some interesting aspects for further work.

We evaluated only four visualization techniques, although many
other existing techniques represent fuzzy clusters. For example,
heatmap is used to visualize the sorted membership matrix to discover
similarity patterns [21]. However, we did not evaluate the heatmap
due to the difficulty in designing consistent visual encodings and its
interactions with the four techniques. We did not include any dataset
with two clusters in selecting experiment datasets. Although the ap-
plication scenarios related to two fuzzy clusters are common, such
datasets were not used in the evaluation because they are not typical
multi-dimensional data. Nevertheless, the use of data of two clusters in
evaluation in the future is worthwhile.

The experiment datasets have diverse clustering structures and data
sizes. However, we did not discuss the specific effects of the datasets
on the visualization techniques in the experiment result analysis; in-
stead, we examined these effects. The Friedman test showed that no
significant differences were found for the datasets in terms of accuracy
and satisfaction, because each dataset underwent the experiment with
the same number of times. With respect to completion time, a large
data size corresponded to a great time cost of the techniques. The above
results are consistent with our conventional understanding.

We only provided a fixed dimension reordering strategy for PCP,
SPM, and Radviz. Our aim was to simplify interactive operation and
experiment design, because it would be a time-consuming and tedious
process for the volunteers to manually search a satisfactory dimension
ordering, and providing multiple preset reordering strategies would
introduce a new experiment condition. Certainly, different dimension
reordering strategies can reveal distinct aspects of a dataset [19, 27, 56],
which may affect our experiment results [20]. Hence, this is an open
question worth exploring in the future.

We preset the questions of the objective questionnaires with the
representative data items and clusters, which is beneficial to state clear
experimental goals to the volunteers and facilitate quantitative analysis.
Nonetheless, the lack of open-ended questions means that the volunteers
have no opportunities for free exploration.

The volunteers involved in this evaluation were not extensive. The
main reason is that each volunteer needed to spend a long time in the ex-
periment. Although we controlled the data size and the preset questions,
the experiment was still time-consuming. Our training session lasted on
average three hours. Apart from the training session and rest time, each
volunteer took at least four hours to complete all the questionnaires.
Hence, it is not clear what the results would be if a large number of



volunteers participate in the experiment. Although our analysis results
with regard to prior knowledge is similar to that of Dasgupta et al. [11],
it is still not convincing. We hope to have an opportunity to conduct
experiments involving a wider range of volunteers in the future.

Our experiment result analysis was performed on a range of metrics,
which may be related. For example, the completion time should be
relevant to the accuracy of the answers. However, the result analysis
was based on a single metric analysis without revealing such relation-
ship. The result analysis related to the interactions indicated that the
interactions played an important role in reducing the performance dif-
ferences among the techniques in solving the questions. However, we
did not further analyze how performance differences would change
with regard to whether the interactions were used or not. Discussing
more interaction techniques and evaluating their impact are interesting
topics that should be further explored. The four tasks we considered
in this study do not cover all user queries in fuzzy clusters analysis.
For example, the entire evaluation did not involve a comparison of two
fuzzy clustering results. We plan to explore more tasks to better address
the majority of user goals.

8 CONCLUSION

In this work, we conducted a controlled experiment to evaluate multi-
dimensional visualization techniques in analyzing fuzzy clusters. Four
multi-dimensional visualization techniques were evaluated, namely,
PCP, SPM, PCA and Radviz, which are commonly used in both general
multi-dimensional data analysis and fuzzy clusters analysis. We first
defined analytical tasks and representative questions specific to fuzzy
clusters analysis. We then designed objective questionnaires to compare
the accuracy, time, and satisfaction in using the four techniques to
solve the questions. We also designed subjective questionnaires to
collect the experience of the volunteers with the four techniques in
terms of ease of use, informativeness, and helpfulness.With a complete
experiment process and a detailed result analysis, we provide instructive
guidance for analysts in selecting appropriate and efficient visualization
techniques to analyze fuzzy clusters. This work also suggests some
directions for further research on the evaluation of multi-dimensional
visualizations for understanding fuzzy clusters. Moreover, we believe
this work will motivate the visualization and visual analytics community
to pay urgent attention to evaluation studies involving various real-
world application scenarios.
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[48] T. Rzeźniczak. Visual analysis techniques for medical diagnosis support.
Computer Science and Mathematical Modelling, 2(2):33–41, 2015. doi:
10.5604/15084183.1197450

[49] M. Sedlmair, T. Munzner, and M. Tory. Empirical guidance on scatter-

plot and dimension reduction technique choices. IEEE Transactions on
Visualization and Computer Graphics, 19(12):2634–2643, 2013. doi: 10.
1109/tvcg.2013.153

[50] J. Sharko and G. Grinstein. Visualizing fuzzy clusters using radviz. In
Proceedings of the 13th International Conference on Information Visuali-
sation, pp. 307–316. IEEE, 2009. doi: 10.1109/iv.2009.74

[51] J. Sharko, G. Grinstein, and K. A. Marx. Vectorized radviz and its applica-
tion to multiple cluster datasets. IEEE Transactions on Visualization and
Computer Graphics, 14(6):1444–1427, 2008. doi: 10.1109/tvcg.2008.173

[52] Y. Shi, C. Bryan, S. Bhamidipati, Y. Zhao, Y. Zhang, and K.-L. Ma.
Meetingvis: Visual narratives to assist in recalling meeting context and
content. IEEE Transactions on Visualization and Computer Graphics,
24(6):1918–1929, 2018. doi: 10.1109/tvcg.2018.2816203

[53] J. Soo Yi, R. Melton, J. Stasko, and J. A. Jacko. Dust & magnet: multi-
variate information visualization using a magnet metaphor. Information
visualization, 4(4):239–256, 2005. doi: 10.1057/palgrave.ivs.9500099

[54] E. R. A. Valiati, M. S. Pimenta, and C. M. D. S. Freitas. A taxonomy of
tasks for guiding the evaluation of multidimensional visualizations. In
Proceedings of the 2006 AVI Workshop on Beyond Time and Errors: Novel
Evaluation Methods for Information Visualization, pp. 1–6. ACM, 2006.
doi: 10.1145/1168149.1168169

[55] Y. Wang, L. Gou, A. Xu, M. X. Zhou, H. Yang, and H. Badenes. Veilme:
An interactive visualization tool for privacy configuration of using per-
sonality traits. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, pp. 817–826. ACM, 2015. doi: 10.
1145/2702123.2702293

[56] E. J. Wegman. Hyperdimensional data analysis using parallel coordinates.
Journal of the American Statistical Association, 85(411):664–675, 1990.
doi: 10.2307/2290001

[57] S. Wehrend and C. Lewis. A problem-oriented classification of visu-
alization techniques. In Proceedings of the First IEEE Conference on
Visualization, pp. 139–143. IEEE, 1990. doi: 10.1109/visual.1990.146375

[58] C. Williamson and B. Shneiderman. The dynamic homefinder: Evaluat-
ing dynamic queries in a real-estate information exploration system. In
Proceedings of the 15th Annual International ACM SIGIR Conference
on Research and Development, pp. 338–346. ACM, 1992. doi: 10.1145/
133160.133216

[59] J. Xia, F. Ye, W. Chen, Y. Wang, W. Chen, Y. Ma, and A. K. Tung.
LDSScanner: Exploratory analysis of low-dimensional structures in high-
dimensional datasets. IEEE Transactions on Visualization and Computer
Graphics, 24(1):236–245, 2018. doi: 10.1109/tvcg.2017.2744098

[60] C. Xie, W. Zhong, and K. Mueller. A visual analytics approach for
categorical joint distribution reconstruction from marginal projections.
IEEE Transactions on Visualization and Computer Graphics, 23(1):51–60,
2017. doi: 10.1109/tvcg.2016.2598479

[61] J. Yang, W. Peng, M. Ward, and E. Rundensteiner. Interactive hierar-
chical dimension ordering, spacing and filtering for exploration of high
dimensional datasets. In Proceedings of IEEE Symposium on Informa-
tion Visualization, pp. 105–112. IEEE, 2003. doi: 10.1109/infvis.2003.
1249015

[62] L. A. Zadeh. Fuzzy sets. In Proceedings of the Fuzzy Sets, Fuzzy Logic
and Fuzzy Systems, pp. 394–432. World Scientific, 1996. doi: 10.1142/
9789814261302 0021

[63] F. Zhou, W. Huang, Y. Zhao, Y. Shi, X. Liang, and X. Fan. ENTVis: A
visual analytic tool for entropy-based network traffic anomaly detection.
IEEE Computer Graphics and Applications, 35(6):42–50, 2015. doi: 10.
1109/mcg.2015.97


	Introduction
	Related Work
	Visualization of Fuzzy Clustering Analysis
	Evaluation of Multi-dimensional Visualization

	Technique Design
	Data Model
	Visual Encodings
	Interactions

	Tasks and Hypotheses
	Task Definition
	Hypotheses Definition

	Experiment Design
	Data and Questionnaire
	Participants and Apparatus
	Experiment Procedure
	Analysis Approach

	Experiment Results
	Hypothesis and Objective Questionnaire Analysis
	Subjective Questionnaire Analysis
	Summary

	Discussion
	Conclusion

